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Abstract. This paper introduces a novel approach to visual dia-
logue that is based on neuro-symbolic procedural semantics. The ap-
proach builds further on earlier work on procedural semantics for vi-
sual question answering and expands it on the one hand with neuro-
symbolic reasoning operations, and on the other hand with mech-
anisms that handle the challenges that are inherent to dialogue, in
particular the incremental nature of the information that is conveyed.
Concretely, we introduce (i) the use of a conversation memory as
a data structure that explicitly and incrementally represents the in-
formation that is expressed during the subsequent turns of a dia-
logue, and (ii) the design of a neuro-symbolic procedural semantic
representation that is grounded in both visual input and the conver-
sation memory. We validate the methodology using the reasoning-
intensive MNIST Dialog and CLEVR-Dialog benchmark challenges
and achieve a question-level accuracy of 99.8% and 99.2% respec-
tively. The methodology presented in this paper responds to the
growing interest in the field of artificial intelligence in solving tasks
that involve both low-level perception and high-level reasoning using
a combination of neural and symbolic techniques.

1 Introduction

Visual dialogue refers to the task in which an artificial agent and a
human hold a meaningful and coherent conversation that is grounded
in visual input [7]. Typically, an agent needs to answer a sequence
of questions about a given image, where the questions can only be
understood in relation to previous question-answer pairs.

A schematic depiction of a typical visual dialogue task is shown
in Figure 1. In this task, an agent is presented with the image on
the left, and needs to answer the sequence of questions Q; to Qu
on the right. The four question-answer pairs constitute a coherent
dialogue, in which Q; can be answered based on the image alone, but
in which Q> to Q4 can only be answered based on the combination
of the image and the previous question-answer pairs.

In this paper, we introduce the use of neuro-symbolic procedural
semantic representations for solving visual dialogue tasks. We build
further on earlier work in the area of visual question answering, in
which procedural semantic representations have already been suc-
cessfully used for representing the meaning of questions in the form
of executable queries [2, 16, 26]. Such procedural semantic represen-
tations capture the logical structure underlying a question, and can be
directly executed on a given image to compute an answer.
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Q| : Are there any triangles?
A;: Yes
Q2: How many?
A,: One
Q3: Is there an object to its left?
. Aj: Yes
Q4: What is its colour?
Ay Red

Figure 1. Schematic representation of a typical visual dialogue task, in
which an artificial agent needs to answer a sequence of follow-up questions
about an image.

An example of a procedural semantic representation for the ques-
tion ‘Are there more squares than circles?’, asked about the image
in Figure 1, is shown in Figure 2. The query is composed of six op-
erations, called primitives, that need to be performed by an artificial
agent in order to compute the answer to the question. First of all,
the SEGMENT-SCENE operation segments the image and binds the
set of foreground objects to the ‘?segmented-scene’ variable. Then,
two FILTER operations take this set of objects as input and bind the
set of squares and the set of circles to the variables ‘?squares’ and
‘?circles’ respectively. Then, the set of squares and the set of cir-
cles are counted by COUNT operations and the cardinality of each set
is computed. Finally, the GREATER-THAN operation checks whether
the cardinality of the first set is larger than the cardinality of the sec-
ond set. The result of this last operation (in this case NO) is at the
same time the answer to the question as a whole.

‘When moving from visual question answering to visual dialogue,
the two-step process of first mapping a question to its logical struc-
ture and then executing the corresponding query on an image be-
comes more challenging. For example, in the question ‘What is its
colour?’, the possessive anaphoric pronoun “its” refers to an object
that was introduced by an earlier question-answer pair, and which
must be retrieved in order to be able to answer the question. As op-
posed to visual question answering systems, visual dialogue systems
thus need to be able to keep track of the information that has been
conveyed during earlier dialogue turns, as well as to use this infor-
mation for answering questions in later turns.

In order to overcome this challenge, we introduce the use of a con-
versation memory as a data structure that explicitly and incrementally
stores the information that is expressed in the subsequent turns of a
dialogue. Additionally, we present a procedural semantic representa-
tion for visual dialogue tasks, which is able to query both visual input
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Figure 2. Example of a procedural semantic representation for the question ‘Are there more squares than circles?’, executed on the image in Figure 1. The
answer to the question given this image is NO.

and the conversation memory. Due to its neuro-symbolic nature, this
semantic representation can exploit both the strengths of subsym-
bolic systems for interacting with perceptual data, in this case the
image, and the strengths of symbolic systems for reasoning based on
previously acquired knowledge, in this case by retrieving structured
information from the conversation memory.

The evaluation of our novel methodology on the reasoning-
intensive MNIST Dialog benchmark [30] and the more challenging
CLEVR-Dialog benchmark [20] shows that through the introduction
of a conversation memory and the design of a compatible neuro-
symbolic procedural semantic representation, we have been able to
transfer the success of using procedural semantics in the field of vi-
sual question answering to the field of visual dialogue. The method-
ology presented in this paper contributes to the growing body of re-
search in artificial intelligence that tackles tasks that involve both
low-level perception and high-level reasoning using a combination
of neural and symbolic techniques.

The rest of this paper is structured as follows. Section 2 presents
a brief overview of the state of the art in visual dialogue and pro-
cedural semantics. Section 3 introduces our novel methodology for
solving reasoning-intensive visual dialogue tasks. Section 4 presents
two experiments in which our method is applied to the MNIST Di-
alog and CLEVR-Dialog benchmark datasets. Section 5 presents
the experimental results. Section 6 provides a concluding discus-
sion. A technical appendix is available at https://beehaif.org/docs/
verheyen2023neuro-appendix.pdf.

2 Background and related work

The state of the art in visual dialogue is dominated by attention-
based neural network approaches, which mainly differ in how they
deal with co-references between question-answer pairs. In general,
these approaches use an encoder-decoder architecture, which learns
to attend to those regions of the image and/or previous question-
answer pairs that are most relevant to answering a given question
[7, 14, 35, 21]. A next line of research focuses on more explicitly
keeping track of the entities that were evoked in earlier dialogue turns
and on resolving co-references and ambiguities with respect to these
entities. Starting from the observation that the proportion of follow-
up questions with non-trivial co-references is limited in existing vi-
sual dialogue datasets, in particular VisDial [24, 1], [30] introduce
the MNIST Dialog dataset with the specific purpose of evaluating to
what extent visual dialogue models are actually capable of reasoning

about previously introduced discourse entities. In the same paper, the
authors introduce a model that explicitly represents the dialogue his-
tory as a combination of previous question-answer pairs and their as-
sociated attentions, and is able to retrieve the relevant attention for a
given question from this associative memory. Building further on this
work, [19] also represent the dialogue history in the form of an asso-
ciative memory, but the keys are here more fine-grained entity-level
descriptions instead of question-answer pairs. The authors introduce
a neural module network architecture [3] in which the meaning rep-
resentation includes two dedicated modules for interacting with the
associative memory. [20] introduce the CLEVR-Dialog dataset for
studying and benchmarking multi-turn reasoning in visual dialogue.
[31] introduce three extensions of memory, attention and composi-
tion (MAC) networks [12] that deal with the conversational nature
of visual dialogue tasks. A first extension consists in passing infor-
mation across dialogue turns by initialising the memory state of the
first MAC-cell of each turn with the value of the memory state of the
last MAC-cell of the previous turn. A second extension concerns a
context-aware attention mechanism that implements a transformer-
like self-attention mechanism on the previous control states. A final
extension consists in appending the entire dialogue history to the cur-
rent question.

Procedural semantic representations, as pioneered by [37], [36]
and [17] capture the meaning of linguistic expressions in the form
of programs that can be executed algorithmically. When it comes
to the properties of the procedural semantic representations them-
selves, three different approaches can be distinguished. A first class
of models represent the meaning of utterances as queries expressed in
a database querying language, such as FunQL [6] or SPARQL [38].
A second class of models represent the meaning of questions using
logical forms, often defined in terms of variations on the lambda cal-
culus [29]. The third class of models use formalisms that were es-
pecially designed for implementing and processing open-ended pro-
cedural semantic languages. Examples of models of this class in-
clude meaning representations represented in Incremental Recruit-
ment Language (IRL) [32], as used for example by [28] and [26],
or the functional programs used by [2] and [15]. While the primi-
tive operations used in these special-purpose procedural semantics
languages need to be implemented or learnt, this approach has the
advantage that the languages are open-ended and directly executable.

Primitive operations in procedural semantics can be opera-
tionalised symbolically or subsymbolically. Neural module networks
have been introduced by [3] as an operationalisation of fully sub-
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symbolic procedural semantic representations applied to visual ques-
tion answering tasks. [19] extend this approach to visual dialogue by
adding primitive operations that perform multi-turn co-reference res-
olution. [39], [23] and [26] present a symbolic approach where the
procedural semantic representations are not executed on the image
directly, but on a scene graph representation that is generated first.
Finally, [22] propose a hybrid procedural semantic engine which in-
tegrates neural predicates in probabilistic logic programs.

3 Methodology: high-level overview

Our novel approach to visual dialogue operationalises two main
ideas. First, the history of a dialogue is represented explicitly, in-
crementally and in a structured way. We refer to the data structure
holding this information by the term conversation memory. Second,
the meaning of linguistic utterances is represented using a neuro-
symbolic procedural semantic representation that combines subsym-
bolic and symbolic primitive operations.

3.1 Conversation memory

The conversation memory captures all information about the dia-
logue history that can be relevant for interpreting later dialogue turns,
as inspired by the incremental build-up of logical forms in Discourse
Representation Theory (DRT) [18]. The conversation memory repre-
sents this relevant information in an explicit and human-interpretable
way, and is incrementally extended after each dialogue turn. Per turn,
the conversation memory stores:

e atimestamp capturing the turn number

e the utterance observed during the turn

e the sentence type of this utterance, indicating for example the
question type for questions

e the reply that was produced, if applicable

o the topic of the conversation from an information structure point
of view

e a symbolic representation of the set of all entities evoked during
the dialogue up to this turn, including all their properties that were
mentioned

e for each entity, a pointer to an attention over the image that high-
lights its grounding in the input

A schematic representation of the conversation memory after pro-
cessing the dialogue introduced in Figure 1 is shown in Figure 3.
At this point, the conversation memory holds information about four
subsequent dialogue turns. In the first turn, the question ‘Are there
any triangles?’ of type QUESTION-EXIST is observed and the an-
swer ‘Yes’ is returned. The topic of the conversation at this point
is the entity ‘object-1’. Both the grounding of entity ‘object-1’ in
the input image and its mentioned shape property are stored in the
conversation memory. In the second turn, the question ‘How many?’
of type QUESTION-COUNT is asked about the current topic of the
conversation and the answer ‘One’ is returned. The topic of the con-
versation does not change and no additional information is added.
In the third turn, the question ‘Is there an object to its left?’ of type
QUESTION-EXIST is processed and the answer ‘Yes’ is returned. A
new entity ‘object-2’ is added to the conversation memory with as
only information its grounding in the input image. The topic of the
conversation shifts to entity ‘object-2’. Finally, at the fourth turn, the
question ‘What is its colour? is processed. The topic of the conver-
sation, namely ‘object-2’, is inferred from the previous turn and the

answer ‘Red’ is returned. The colour property of ‘object-2° is added
to the representation of this entity in the conversation memory.

The information that we include in our implementation of the con-
versation memory reflects the information that is relevant in the vi-
sual dialogue tasks that we tackle in Section 4. We do not claim in
any way that this information is sufficient to model everyday conver-
sations between human interlocutors, which fall outside the scope of
these benchmark challenges. Indeed, further research in pragmatics
is needed in order to construct more accurate models of the role that
discourse information plays in human conversation.

3.2 Neuro-symbolic procedural semantics

In tandem with the conversation memory, we introduce a neuro-
symbolic procedural semantics that is designed to represent the
meaning of utterances in their discourse context. The set of primi-
tive operations that is part of our semantics is an extension of the
set of operations used in the annotation of the CLEVR VQA dataset
[15].

Our neuro-symbolic procedural semantics combines subsymbolic
primitives that implement operations over unstructured data, in par-
ticular input images or attentions, with symbolic primitives that im-
plement operations over structured data, in particular information
contained in the conversation memory. Primitives that can operate
on both structured and unstructured input have both a symbolic and
a subsymbolic implementation. At runtime, the adequate implemen-
tation is then chosen based on the type of the input arguments.

Concretely, the neuro-symbolic procedural semantics consists of
16 primitive operations, which can combine to represent the mean-
ing of statements and questions about objects in an image. The state-
ments and questions can be about the existence and number of ob-
jects in the image, their attributes and the spatial relations between
the objects. An overview of the different primitive operations as cat-
egorised by their symbolic or subsymbolic implementation is shown
in Table 1. On the one hand, the set of symbolic primitives consists of
primitives that operate on the conversation memory (i.e., GET-TOPIC,
GET-PREVIOUS-TOPIC, GET-ATTRIBUTE-CATEGORY and FILTER)
and primitives that perform reasoning operations, such as counting or
checking the uniqueness of the input (i.e., UNIQUE, COUNT, EXIST,
MORE-THAN-ONE, EXIST-OR-COUNT). On the other hand, the set
of subsymbolic primitives includes operations related to perception,
such as instance segmentation or classification of visual attentions
according to their attributes. These primitives build upon a shared
inventory of neural modules. The module that underlies the subsym-
bolic SEGMENT-SCENE primitive is a Mask R-CNN-based network
for instance segmentation [10]. The modules underlying the other
subsymbolic primitives (i.e. QUERY, FILTER, RELATE, EXTREME-
RELATE and IMMEDIATE-RELATE) are implemented by SqueezeNet-
based binary classifiers [13] that predict whether an object holds
a particular attribute (e.g. BLUE, LARGE or SHINY). The FIND-IN-
SCENE and SET-DIFFERENCE primitives bridge between the sym-
bolic and the subsymbolic domains.

3.3 Extending the conversation memory

The conversation memory is extended with new information after
each dialogue turn. Concretely, after each turn, a new turn repre-
sentation is created for the current timestep. The timestep, utterance
and reply slots of the turn representation are straightforwardly filled
based on the available information. The sentence type is inferred
from the final primitive operation executed during the evaluation of
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Conversation memory

Turn 1 Turn 2 Turn 3

timestep: 1

utterance: Are there any triangles?
sentence type: Question-Exist
reply: Yes

topic: {object-1}

entities:

timestep: 2

utterance: How many?
sentence type: Question-Count
reply: One

topic: {object-1}

entities:

timestep: 3

reply: Yes
topic: {object-2}
entities:

utterance: Is there an object to its left?
sentence type: Question-Exist

Turn 4

timestep: 4

utterance: What is its colour?
sentence type: Question-Query
reply: Red

topic: {object-2}

entities:

object-1 object-1 object-1

attributes:
shape: triangle
attention:

attributes:
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attention:
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attention:
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Figure 3. Schematic representation of the conversation memory after the fourth turn of the dialogue sketched in Figure 1. The conversation memory is
incrementally updated after each dialogue turn as new information becomes available.

Table 1. Overview of primitive operations categorised by their symbolic or

subsymbolic implementation.

symbolic subsymbolic
FILTER FILTER

UNIQUE SEGMENT-SCENE
COUNT RELATE

EXIST EXTREME-RELATE

MORE-THAN-ONE
EXIST-OR-COUNT
GET-TOPIC
GET-PREVIOUS-TOPIC
GET-ATTRIBUTE-CAT
FIND-IN-SCENE
SET-DIFFERENCE

IMMEDIATE-RELATE
QUERY

the semantic network for the current utterance. The topic corresponds
to the set of objects that was bound to the input argument of the same
primitive operation call. Finally, entities are added or updated based
on the properties of the objects that were mentioned during the cur-
rent turn.

4 Operationalisation of methodology and
experimental set-up

We will now operationalise and validate our methodology using two
standard benchmark challenges in the field of visual dialogue, in par-
ticular MNIST Dialog [30] and CLEVR-Dialog [20]. Both bench-
marks were explicitly designed to be bias-free and to include a large
proportion of non-trivial co-references across dialogue turns. Due to
these two characteristics, answering the questions in the datasets can-
not be done based on any statistical properties of the scenes, ques-
tions and answers alone, but requires actual reasoning about both the
visual content and the discourse context.

4.1 MNIST Dialog

The MNIST Dialog dataset consists of 50,000 images, which are
each accompanied by three dialogues. Each dialogue is in turn com-
posed of 10 question-answer pairs. Each image consists in a synthet-
ically generated 4x4 grid of hand-drawn digits with four randomly
sampled attributes: colour, background colour, number and style. A
symbolic description of the scene is also provided as meta-data, but

is not part of the actual benchmark. The questions and answers are
automatically generated. The questions can either query attributes of
a single digit (e.g. ‘What is the color of the digit below it?’) or count
digits based on one or more of their attributes (e.g. ‘Are there brown
digits?’). They can also include references to the spatial relations be-
tween the digits. The answers always take the form of a single word.

There are three main challenges involved in the operationalisation
of our methodology for the MNIST Dialog benchmark. First of all,
we need a means to map the MNIST Dialog questions to seman-
tic networks that are composed of the primitive operations that we
have introduced in Table 1. This is a highly non-trivial task, as the
MNIST Dialog dataset does not come with any semantic annotation
of the questions. Second, we need to train the neural network mod-
ules underlying the subsymbolic primitive operations on the MNIST
Dialog images. Finally, we would like to be able to evaluate the pro-
cess of mapping from questions to semantic networks, the execution
of these networks, and the neural modules themselves independently
from each other.

In order to operationalise the process of mapping from the MNIST
Dialog questions to their semantic representations, we adopt a com-
putational construction grammar approach [33, 34, 4, 5]. Concretely,
we extend the computational construction grammar developed by
[26] for the CLEVR VQA dataset [15] so that it is able to handle con-
structions involving co-referential expressions. The meaning predi-
cates contributed by these additional constructions are expressed in
terms of the primitive operations defined above. Although interest-
ing in its own right, the details of the grammar itself fall outside the
scope of this paper. We refer readers interested in the machine learn-
ing of computational construction grammars in the context of visual
question answering to [25] and [8]. The execution of the semantic
networks is modelled using the Incremental Recruitment Language
(IRL) framework [32].

In order to verify the aptness of the semantic representations re-
sulting from the language processing process, we have in a first phase
made symbolic implementations of the primitive operations that
work on the noise-free meta-data that describe the images rather than
on the images themselves. By doing this, we could verify whether
the predicted semantic networks would in theory always lead to the
correct answer given a question and a scene. We could show that
the networks indeed achieved a 100% accuracy when applied to the
meta-data of the images. This proves that the primitive operations
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presented in Table 1 are indeed sufficient to represent the meaning of
the questions in the dataset. It is obviously the temporary noise-free
condition of the dataset that makes the 100% figure possible.

The neural modules underlying the primitives were then each
trained on the training section of the MNIST Dialog dataset and their
accuracy was evaluated on the validation set. All individual modules
achieved an accuracy of over 99.8% on the image data. Full techni-
cal detail on the training of the modules is provided in the technical
appendix.

4.2 CLEVR-Dialog

The CLEVR-Dialog dataset consists of 85,000 images, which are
each accompanied by five dialogues. Each dialogue starts with a cap-
tion that makes a statement about the contents of the image (e.g.
‘There is a gray cube right of a shiny cylinder’). The caption is then
followed by 10 question-answer pairs. The images depict synthet-
ically generated scenes consisting of 3D geometrical objects with
randomly sampled attributes: shape, size, colour and material. The
questions involve querying an attribute of an object in the scene (e.g.
‘What shape is it?’), counting objects based on one or more of their
attributes (e.g. ‘How many green spheres are there?’), and querying
whether a set of objects satisfies a given description (e.g. ‘Are there
any green spheres?’). The questions can involve reference to differ-
ent kinds of spatial relations between objects (e.g. ‘the left block’
and ‘the block left of the green cylinder’). In contrast to MNIST Di-
alog questions, anaphora in CLEVR-Dialog questions can refer back
to entities mentioned in any of the previous dialogue turns. More-
over, resolving history-dependent questions can require taking into
account the entire dialogue history, as is for example the case in ques-
tions such as ‘How many other objects are present in the image?’.

In order to map from utterances to procedural semantic networks,
we use the exact same construction grammar as the one used for the
MNIST Dialog benchmark. In order to verify the aptness of the pro-
grams and language processing system, we create temporary sym-
bolic implementations of the primitives and evaluate the programs
that resulted from language processing on the noise-free meta-data
that describe the images in the dataset. We achieved an accuracy of
99.99%".

The neural modules underlying the primitive operations were
trained on the training portion of the CLEVR-Dialog dataset and
their accuracy was evaluated on a held-out validation set. All mod-
ules achieved an accuracy of over 97.6%. Full technical detail on the
training of the modules is provided in the technical appendix.

An operational example of the execution of a semantic network
underlying a question from the CLEVR-Dialog dataset on an im-
age is shown in Figure 4. In this example, the question ‘What
is its colour?’ following the caption ‘There is a large sphere.’ is
asked. The grammar maps the question to a procedural semantic pro-
gram consisting of five primitive operations (i.e., SEGMENT-SCENE,
GET-TOPIC, FIND-IN-SCENE, UNIQUE, QUERY). After execution of
the primitive operations, which includes consulting the conversation
memory in order to retrieve the topic of the conversation, the answer
‘cyan’ is returned.

! The non-perfect accuracy was due to scenes that contained an even number
of objects and in which a question relied on reference to the object ‘in the
middle’.

5 Results

When it comes to evaluating the performance of the overall system
on the benchmark challenges, we include two different settings. First
of all, in the ‘standard’ setting, we evaluate the accuracy of the an-
swers provided by our system as such. In the ‘guessing’ setting, the
system is allowed to make an educated guess when the execution of a
semantic network fails and therefore does not lead to any answer. The
educated guess is made based on the question type and the distribu-
tion of answers per question type in the training set. The ‘guessing’
setting is foreseen in order to be able to compare our results to end-
to-end neural approaches which always provide an answer even if its
probability is low.

An overview of the evaluation results of our system on the MNIST
Dialog and CLEVR-Dialog benchmark datasets is shown at the bot-
tom of Table 2. In the best-performing experimental setting, i.e. the
‘guessing’ setting, our system achieves a question-level accuracy of
99.8% on the MNIST Dialog benchmark and of 99.2% on the more
challenging CLEVR-Dialog benchmark. In the ‘standard’ setting,
i.e. without guessing, it achieves a question-level accuracy of 99.8%
and 99.0% respectively.

Table 2. Overview of results for MNIST Dialog and CLEVR-Dialog

MNIST Dial CLEVR-Dial

Encoder-decoder approaches

LF [7] 45.1 559

HRE [7] 49.1 63.3

MN [7] 48.5 59.6

AMEM [30] 96.4 /
Neural module networks approaches

N2NMN?[11] 23.8 56.6

corefNMN [20] 99.3 68.0
MAC network approaches

MAC-CQ-CAA-MTM [31] / 98.3
Ours

standard 99.8 99.0

guessing 99.8 99.2

The table also compares our results against previous approaches,
namely the encoder-decoder-based approaches presented by [7] and
[30], the neural module networks-based approaches by [11] and [20],
and the MAC network-based approach by [31]. We can see that
our system outperforms the state of art on both MNIST Dialog and
CLEVR-Dialog. While other approaches that tackle both visual di-
alogue benchmark challenges typically perform much better on the
easier MNIST Dialog benchmark as compared to the more challeng-
ing CLEVR-Dialog benchmark, our approach obtains consistently
good results across both datasets.

6 Discussion and conclusion

In this paper, we have introduced a novel methodology to visual dia-
logue that is based on neuro-symbolic procedural semantics and have
evaluated it on the reasoning-intensive MNIST Dialog and CLEVR-
Dialog benchmark challenges. Concretely, our contribution consists
in (i) the introduction of a conversation memory as a data structure
that explicitly and incrementally represents the information that is

2 The evaluation of the model on the MNIST Dialog dataset is reported by
[19] and of CLEVR-Dialog by [20].
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Figure 4. Schematic representation of the execution of the semantic representation for the utterance ‘What is its colour?’ following the caption ‘There is a
large sphere.” on a scene from the CLEVR-Dialog dataset.
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Figure 5. Schematic representation of the execution of the semantic network underlying the utterance ‘How many brown objects are there?’ on a scene from
the CLEVR-Dialog dataset, illustrating the transparency of the approach. The filter operation wrongly recognises the leftmost object to be brown. As a
consequence, two brown objects are counted instead of one.
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expressed during the subsequent turns of a dialogue, and (ii) the de-
sign of a neuro-symbolic procedural semantics that is grounded in
both visual input and the conversation memory.

While the reported benchmark accuracies are definitely important
to validate our methodology in comparison to existing approaches,
the more prominent contribution of the methodology that we present
lies in four main characteristics that distinguish it from the state of
the art in visual dialogue. First of all, the methodology is explain-
able in human-interpretable terms. Input utterances are mapped onto
procedural semantic representations, which correspond to logic pro-
grams. These programs, which reveal the logical structure underlying
an input utterance, are composed of human-interpretable primitive
operations, such as COUNT, QUERY and FILTER. This means that the
result of the initial language processing step can be inspected and
understood by the user. The conversation memory of the system also
stores information about the history of a dialogue in a structured and
human-interpretable way, thereby being fully transparent about what
is remembered by the system. The input and output of each prim-
itive operation can be traced and interpreted, as they consist in ei-
ther meaningful symbols (human-interpretable categories) or visual
attentions over images. Given that these visual attentions are the in-
put and output of human-interpretable operations, humans are able to
judge whether an attention corresponds to what is expected or not. As
the symbolically implemented primitives can be traced on a mean-
ingful level, the only aspect of the system where the interpretability
of the computation is limited is situated in the subsymbolic primi-
tives that deal with perception on the lowest level. By pushing the
neuro-symbolic boundary so far down, we ensure that any reasoning
capabilities that exceed the perception of basic categories is explain-
able in human-interpretable terms.

A related advantage of this approach is that it avoids inconsisten-
cies in reasoning by implementing its subsymbolic primitive opera-
tions on top of a shared inventory of highly-specialised neural mod-
ules. Keeping consistency across reasoning operations is a highly de-
sirable property of intelligent systems, which at the same time leads
to a more human-like behaviour. For example, it is obvious that the
human capabilities of recognising objects and counting objects rely
on the same conceptual distinctions. This is reflected in our system
by implementing the COUNT primitive in terms of computing the car-
dinality of a set of objects returned by a FILTER operation, which is
itself implemented based on the same set of binary classifiers as the
QUERY operation. The answer to the question ‘How many red blocks
are there?’ is as a consequence guaranteed to be consistent with the
answers to the question ‘What is the colour of the block?’ asked for
each block in the scene.

A third asset of our approach is that it can effectively monitor its
own performance. This has become a topic of high interest in the
Al community, since deep neural networks often provide confidence
scores of poor quality, especially when it comes to out-of-distribution
data [27, 9]. Concretely, in our case, the system knows that it has not
been able to answer a question based on sound logic reasoning if
the execution of a semantic network fails. While it can still make
an educated guess in such cases, the system then indicates that the
result should be interpreted with extra care. In fact, the execution of
a semantic network fails in 55.0% of the CLEVR-Dialog errors (i.e.
errors in the ‘standard’ setting) and in 41.7% of the MNIST Dialog
errors (in the ‘standard’ setting as well). The remaining 45.0% and
58.3% of errors respectively remain undetected by the system. This
amounts to only 0.4% of the questions in CLEVR-Dialog and 0.1%
of the questions in MNIST Dialog.

A final advantage resides in the modularity of the approach. New

primitive operations can be added to the system in order to accom-
modate new tasks or to model new cognitive capabilities acquired by
an artificial agent. These new primitives can add to both the logical
and perceptive reasoning capabilities of the agent. Where appropri-
ate, they can reuse neural modules used by existing primitives with-
out needing to retrain them. Neural modules can also dynamically
be added, but these might affect the performance of other modules
and therefore require retraining some of them. For example, adding
a binary classifier for a new colour will likely affect the performance
of existing binary classifiers for other colours, as these were trained
in the absence of the new colour category.

Figure 5 illustrates the interpretability of our approach by provid-
ing an example of a question from the CLEVR-Dialog dataset that
was wrongly answered. Concretely, this example shows how the sys-
tem supports the tracking of the source of errors by providing in-
sight into the logical structure underlying the question, and into the
input and output of the different primitive operations that were per-
formed. The example shows the execution of the semantic network
underlying the utterance ‘How many brown objects are there?’ on a
given CLEVR scene. We can see that the question has been analysed
into three primitive operations: segmenting the scene (SEGMENT-
SCENE), filtering the segmented scene for the colour brown (FILTER)
and counting the number of objects in the resulting set (COUNT).
The result of the counting operation, which is at the same time re-
turned as the answer to the question, is TWO. However, this answer
does not match the gold standard answer from the dataset, which is
ONE. Indeed, when scrutinising the execution trace of the semantic
network on the scene, it becomes clear that the filter operation has re-
trieved two brown objects. After a visual inspection of the attentions,
the human observer can see that the leftmost object in the scene was
wrongly classified as being brown and the source of the error has
been found. If we would now query the colour of the leftmost ob-
ject in the scene, the system is also guaranteed to answer BROWN, as
the FILTER and QUERY primitives internally rely on the same neural
classifiers. Thus, while the answer to the question is wrong, it is log-
ically consistent with the overall perception and reasoning skills of
the system.

In sum, the research reported on in this paper contributes to the
growing body of research in artificial intelligence that tackles tasks
that involve both low-level perception and high-level reasoning using
a combination of neural and symbolic techniques. Neural techniques
are used to deal with low-level perception tasks and thereby give rise
to meaningful symbols that can then be used as a basis for higher-
level reasoning operations. It thereby bears the promise of leading to
the development of artificial agents with more explainable, consistent
and human-like cognitive capacities.
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